Plugins PyTorch Operator Kubeflow PyTorch-Job Training Operator
PyTorch is a Python package that provides two high-level features:
Tensor computation (like NumPy) with strong GPU acceleration
Deep neural networks built on a tape-based autograd system
You can reuse your favorite Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed. More information at https://github.com/kubeflow/pytorch-operator ** or the PyTorch site https://pytorch.org/
Quick Start
As usual, let's deploy PyTorch with one single line command
Copy k3ai apply pytorch-op
Test You PyTorch-Job installation
We will use the MNISE example from the Kubeflow PyTorch-Job repo at https://github.com/kubeflow/pytorch-operator/tree/master/examples/mnist ****
As usual, we want to avoid complexity so we re-worked a bit the sample and make it way much more easier.
Step 1
You'll see tha in the example a container need to be created before running the sample, we merged the container commands directly in the YAML file so now it's one-click job.
For CPU only
Copy kubectl apply -f - << EOF
apiVersion: "kubeflow.org/v1"
kind: "PyTorchJob"
metadata:
name: "pytorch-dist-mnist-gloo"
namespace: kubeflow
spec:
pytorchReplicaSpecs:
Master:
replicas: 1
restartPolicy: OnFailure
template:
metadata:
annotations:
sidecar.istio.io/inject: "false"
spec:
containers:
- name: pytorch
image: pytorch/pytorch:1.0-cuda10.0-cudnn7-runtime
command: ['sh','-c','pip install tensorboardX==1.6.0 && mkdir -p /opt/mnist/src && cd /opt/mnist/src && curl -O https://raw.githubusercontent.com/kubeflow/pytorch-operator/master/examples/mnist/mnist.py && chgrp -R 0 /opt/mnist && chmod -R g+rwX /opt/mnist && python /opt/mnist/src/mnist.py']
args: ["--backend", "gloo"]
Worker:
replicas: 1
restartPolicy: OnFailure
template:
metadata:
annotations:
sidecar.istio.io/inject: "false"
spec:
containers:
- name: pytorch
image: pytorch/pytorch:1.0-cuda10.0-cudnn7-runtime
command: ['sh','-c','pip install tensorboardX==1.6.0 && mkdir -p /opt/mnist/src && cd /opt/mnist/src && curl -O https://raw.githubusercontent.com/kubeflow/pytorch-operator/master/examples/mnist/mnist.py && chgrp -R 0 /opt/mnist && chmod -R g+rwX /opt/mnist && python /opt/mnist/src/mnist.py']
args: ["--backend", "gloo"]
EOF
If you have GPU enabled you may run it this way
Copy kubectl apply -f - << EOF
apiVersion: "kubeflow.org/v1"
kind: "PyTorchJob"
metadata:
name: "pytorch-dist-mnist-gloo"
namespace: kubeflow
spec:
pytorchReplicaSpecs:
Master:
replicas: 1
restartPolicy: OnFailure
template:
metadata:
annotations:
sidecar.istio.io/inject: "false"
spec:
containers:
- name: pytorch
image: pytorch/pytorch:1.0-cuda10.0-cudnn7-runtime
command: ['sh','-c','pip install tensorboardX==1.6.0 && mkdir -p /opt/mnist/src && cd /opt/mnist/src && curl -O https://raw.githubusercontent.com/kubeflow/pytorch-operator/master/examples/mnist/mnist.py && chgrp -R 0 /opt/mnist && chmod -R g+rwX /opt/mnist && python /opt/mnist/src/mnist.py']
args: ["--backend", "gloo"]
# Change the value of nvidia.com/gpu based on your configuration
resources:
limits:
nvidia.com/gpu: 1
Worker:
replicas: 1
restartPolicy: OnFailure
template:
metadata:
annotations:
sidecar.istio.io/inject: "false"
spec:
containers:
- name: pytorch
image: pytorch/pytorch:1.0-cuda10.0-cudnn7-runtime
command: ['sh','-c','pip install tensorboardX==1.6.0 && mkdir -p /opt/mnist/src && cd /opt/mnist/src && curl -O https://raw.githubusercontent.com/kubeflow/pytorch-operator/master/examples/mnist/mnist.py && chgrp -R 0 /opt/mnist && chmod -R g+rwX /opt/mnist && python /opt/mnist/src/mnist.py']
args: ["--backend", "gloo"]
# Change the value of nvidia.com/gpu based on your configuration
resources:
limits:
nvidia.com/gpu: 1
EOF
Step 2
Check if pod are deployed correctly with
Copy kubectl get pod -l pytorch-job-name=pytorch-dist-mnist-gloo -n kubeflow
It should ouput something like this
Copy NAME READY STATUS RESTARTS AGE
pytorch-dist-mnist-gloo-master-0 1/1 Running 0 2m26s
pytorch-dist-mnist-gloo-worker-0 1/1 Running 0 2m26s
Step 3
Check logs result of your training job
Copy kubectl logs -l pytorch-job-name=pytorch-dist-mnist-gloo -n kubeflow
You should observe an output similar to this (since we are using 1 Master and 1 worker in this case)
Copy Train Epoch: 1 [55680/60000 (93%)] loss=0.0341
Train Epoch: 1 [56320/60000 (94%)] loss=0.0357
Train Epoch: 1 [56960/60000 (95%)] loss=0.0774
Train Epoch: 1 [57600/60000 (96%)] loss=0.1186
Train Epoch: 1 [58240/60000 (97%)] loss=0.1927
Train Epoch: 1 [58880/60000 (98%)] loss=0.2050
Train Epoch: 1 [59520/60000 (99%)] loss=0.0642
accuracy=0.9660
Train Epoch: 1 [55680/60000 (93%)] loss=0.0341
Train Epoch: 1 [56320/60000 (94%)] loss=0.0357
Train Epoch: 1 [56960/60000 (95%)] loss=0.0774
Train Epoch: 1 [57600/60000 (96%)] loss=0.1186
Train Epoch: 1 [58240/60000 (97%)] loss=0.1927
Train Epoch: 1 [58880/60000 (98%)] loss=0.2050
Train Epoch: 1 [59520/60000 (99%)] loss=0.0642
accuracy=0.9660